Increased blood pressure variability upon standing up improves reproducibility of cerebral autoregulation indices.
نویسندگان
چکیده
Dynamic cerebral autoregulation, that is the transient response of cerebral blood flow to changes in arterial blood pressure, is currently assessed using a variety of different time series methods and data collection protocols. In the continuing absence of a gold standard for the study of cerebral autoregulation it is unclear to what extent does the assessment depend on the choice of a computational method and protocol. We use continuous measurements of blood pressure and cerebral blood flow velocity in the middle cerebral artery from the cohorts of 18 normotensive subjects performing sit-to-stand manoeuvre. We estimate cerebral autoregulation using a wide variety of black-box approaches (including the following six autoregulation indices ARI, Mx, Sx, Dx, FIR and ARX) and compare them in the context of reproducibility and variability. For all autoregulation indices, considered here, the intra-class correlation was greater during the standing protocol, however, it was significantly greater (Fisher's Z-test) for Mx (p < 0.03), Sx (p < 0.003) and Dx (p < 0.03). In the specific case of the sit-to-stand manoeuvre, measurements taken immediately after standing up greatly improve the reproducibility of the autoregulation coefficients. This is generally coupled with an increase of the within-group spread of the estimates.
منابع مشابه
Alterations in autonomic function and cerebral hemodynamics to orthostatic challenge following a mountain marathon.
We examined potential mechanisms (autonomic function, hypotension, and cerebral hypoperfusion) responsible for orthostatic intolerance following prolonged exercise. Autonomic function and cerebral hemodynamics were monitored in seven athletes pre-, post- (<4 h), and 48 h following a mountain marathon [42.2 km; cumulative gain approximately 1,000 m; approximately 15 degrees C; completion time, 2...
متن کاملAutonomic neural control of dynamic cerebral autoregulation in humans.
BACKGROUND The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using tra...
متن کاملDetection of impaired cerebral autoregulation improves by increasing arterial blood pressure variability.
Although the assessment of dynamic cerebral autoregulation (CA) based on measurements of spontaneous fluctuations in arterial blood pressure (ABP) and cerebral blood flow (CBF) is a convenient and much used method, there remains uncertainty about its reliability. We tested the effects of increasing ABP variability, provoked by a modification of the thigh cuff method, on the ability of the autor...
متن کاملDifferential effects of mild central hypovolemia with furosemide administration vs. lower body suction on dynamic cerebral autoregulation.
Diuretic-induced mild hypovolemia with hemoconcentration reportedly improves dynamic cerebral autoregulation, whereas central hypovolemia without hemoconcentration induced by lower body negative pressure (LBNP) has no effect or impairs dynamic cerebral autoregulation. This discrepancy may be explained by different blood properties, by degrees of central hypovolemia, or both. We investigated the...
متن کاملCrossTalk opposing view: dynamic cerebral autoregulation should be quantified using induced (rather than spontaneous) blood pressure fluctuations
Suppose you want to take a car for a test drive. You prefer a smooth ride, so you are probably particularly interested in the car’s suspension system. Where do you take your car? Will you take it for a ride on a well-maintained highway, or will you select worn-down roads with cobblestones, potholes and speed bumps? The answer is clear: you can’t test the car’s suspension system if you don’t cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical engineering & physics
دوره 47 شماره
صفحات -
تاریخ انتشار 2017